токарь-универсал сварочно-сборочного цеха AO «НПО Энергомаш имени академика В.П. Глушко» Россия, г. Химки

## РАКЕТНЫЕ ДВИГАТЕЛИ НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ: РАЗРАБОТКИ И ПЕРСПЕКТИВЫ

Аннотация: в статье представлен ретроспективный анализ основных отечественных разработок жидкостных ракетных двигателей, функционирующих в качестве топлива на сжиженном природном газе (метане). Рассматриваются актуальные и закрытые проекты. В заключении кратко изложены преимущества использования соответствующего вида топлива.

**Ключевые слова:** жидкостный ракетный двигатель, сжиженный природный газ, метан, экологическое топливо, ракетная установка.

Annotation: the paper offers a retrospective analysis of the major domestic developments of liquid-propellant rocket engines operating as liquefied natural gas (methane) fuel. Current and completed projects are considered. The conclusion briefly describes the advantages of using the corresponding type of fuel.

**Key words:** liquid rocket engine, liquefied natural gas, methane, ecological fuel, rocket installation.

После десятилетий исследований, экспериментов, демонстрационных проектов и испытаний прототипов, успешно в эксплуатацию введены лишь несколько жидкостных ракетных двигателей (ЖРД), функционирующих на сжиженном природном газе (СПГ) — пионерами в данной области являются RAPTOR от компании SpaceX, и BE-4 от Blue Origin. Однако такая реальность

вскоре может измениться: недавние отечественные достижения, а также и ряда других стран (Китая, Индии, Японии, Южной Кореи, некоторых европейских государств), свидетельствуют о выделении ресурсов национальными космическими агентствами, многонациональными командами, частными компаниями и инвесторами для реализации программ разработки двигателей, работающих на СПГ.

В мире появилось несколько проектов метан-кислородных ЖРД для коммерческих запусков, а также для полётов в дальний космос [1, с. 45]. С целью создания демонстрационного двигателя инженеры-конструкторы зачастую модифицируют уже существующий двигатель, предназначенный для использования на других видах топлива, однако некоторые двигатели представляют собой совершенно новые конструкции.

Так, имеются сведения о Федеральной космической программе на 2016-2025 годы, включающей разработку маршевых двигательных установок на кислородно-метановом топливе, создание опытных образцов ЖРД нового поколения, оснащённых системой диагностики неисправностей и аварийной защиты, производство базовых элементов двигателей (сопел, сопловых насадок радиационного охлаждения, донных экранов) на базе композитных материалов [2, с. 183-185].

В НПО «Энергомаш» имени академика В.П. Глушко параллельно с исследованиями, проводимыми коллегами из КБхиммаш имени А.М. Исаева и КБХА имени А.С. Косберга, активно ведётся разработка ЖРД на СПГ.

Первые исследования комбинации топлива «жидкий кислород + СПГ» для ЖРД перспективных многоразовых ракет-носителей в НПО «Энергомаш» имени В.П. Глушко были начаты в 1981 году с различных типов по тяге (от 10 кН до 2000 кН) и энергетическим схемам (без дожигания, или с дожиганием генераторного газа) [3, с. 11-13]. К примеру, РД-120К, РД-182, РД-191, РД-192 выполнены с дожиганием окислительного газа, РД-192.2 — с дожиганием восстановительного генераторного газа, РД-192.3 — без дожигания

генераторного газа [4, с. 4].

Примечателен двигательный модуль РД-169, разработка которого велась ещё в 1990-х годах. Изначально его предполагалось использовать в ракетахносителях лёгкого класса «Рикша», задействовав шесть таких модулей в двигателе I ступени РД-190, и II ступени РД-185 (высотная модификация РД-169). На данный момент проект «Рикша» закрыт, однако в настоящее время разработка РД-169 по-прежнему ведётся, теперь для ракеты с многоразовой ступенью «Амур-СПГ» (рисунок 1), по предыдущему названию «Союз-7», (государственный контракт подписан 9 марта 2023 года), готовой к полётам по прогнозам Роскосмоса не раньше 2026 года.

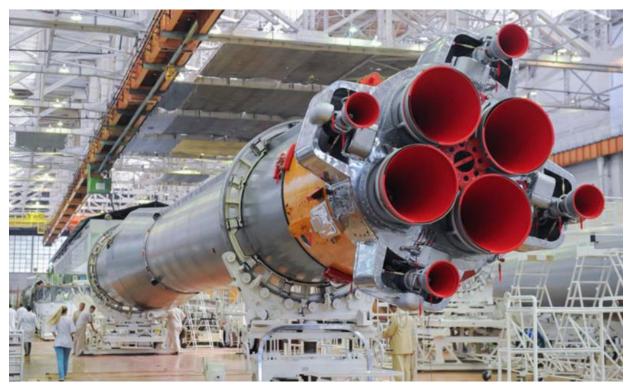



Рисунок 1. Ракета-носитель «Амур-СПГ» [5]

Для новой ракеты-носителя «Амур-СПГ» на базе демонстрационного двигателя РД-0177 (в настоящее время находится на стадии разработки), разрабатывается многоразовый ракетный двигатель РД-0169. Работу над двигателем планируется завершить к концу 2025 года.

Для апогейной двигательной установки разработан эскизный проект

маршевого двигателя РД-183 и двигателя ориентации РД-184 [2, с. 183-185; 3, с. 11-13]. В настоящее время не удалось найти достоверную информацию о дальнейшем развитии проекта.

В КБХА имени А.С. Косберга с 2006 года активно разрабатывается РД-0162 для многоразовой ракетно-космической системы первого этапа МРКС-1. Результаты были представлены в виде макета многоразовой ступени «Байкал» [6, с. 4].

Имеются малочисленные сведения об успешных испытаниях РД-0146M, разработанном на базе серийного РД-0146, первый испытательный пуск которого состоялся в 2001 году [7, с. 4], однако более подробной информации о данном двигателе найти не удалось. С 2007 года разрабатывается метановая версия РД-0146ДМ для межорбитальных буксиров. Важно отметить, что водородный РД-0146 является первым в России двигателем, выполненным по безгенераторной схеме, и первым в мире ЖРД, выполненным по независимой двухвальной схеме подачи компонентов топлива с последовательной подачей газа на турбины.

С 2007 по 2014 годы совместно с итальянской фирмой AVIO разработано и успешно проведено огневое испытание двигателя-демонстратора LM10-MIRA, а с 2012 по 2016 годы велась разработка двигателя-демонстратора РД-0162СД, предназначенного для проведения лётной отработки системного демонстратора возвращаемого ракетного блока МРКС-1.

В конце 2017 года был продемонстрирован опытный образец кислороднометанового двигателя РД-0162Д2А с тягой на уровне моря 40 тс (рисунок 2). В настоящее время проект закрыт. Также разработана и испытана метановая версия РД-0110МД на базе серийного РД-0110, функционирующего на керосине и жидком кислороде.

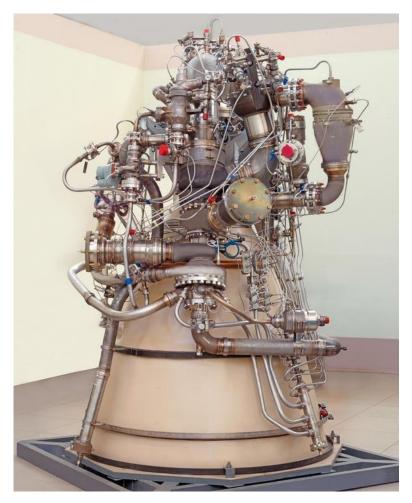



Рисунок 2. Экспериментальный двигатель РД-0162Д2А [8]

В заключении рассмотрим преимущества использования СПГ-топлива (широкое распространение получили компоненты «сжиженный метан – жидкий кислород») для космических запусков. Исследователи отмечают преимущества в энергетическом, конструкционном, функциональном и экологическом планах [2, с. 183-185]. Ключевым является повышение производительности (по сравнению с керосиновым топливом), затем – технического обслуживания сокращение процедур между запусками многоразовых ступеней, снижение затрат на лётное топливо, простота в эксплуатации (по сравнению с водородным топливом), и снижение негативного воздействия на окружающую среду. Общие затраты на запуск можно минимизировать за счёт выбора оптимального дизайна, снижающего единовременные и производственные затраты, а также за счёт широкого использования аддитивного производства с сокращением времени изготовления деталей.

Важно помнить, что будущее аэрокосмической промышленности определяется разработкой и внедрением инновационных технологий, позволяющих, главным образом, сохранить окружающую среду, что возможно при использовании двигателей, функционирующих на экологически безопасном топливе.

## Использованные источники:

- 1. Барышев С.А. Топливо будущего: метано-кислородный пропеллент // XXII МНПК «Научные исследования молодых учёных». Пенза, 20 января 2023. С. 45.
- 2. Дубынин П.А. и др. Выбор принципиальной схемы жрд многоразового использования, работающего на топливной паре «сжиженный природный газ жидкий кислород» // Актуальные проблемы авиации и космонавтики. 2018. Т. 1. № 14. С. 183-185.
- 3. Брегвадзе Д.Т. и др. Применение топлива «кислород + метан» в жидкостных ракетных двигателях // Политехнический молодёжный журнал. -2017. -№ 12. C. 11-13.
- 4. Ванин Ю.В. Многоразовые ракетные двигатели: вопросы эксплуатации // Аллея науки. -2023. -№ 3 (78). C. 4.
- 5. Первая российская многоразовая ракета-носитель обойдётся в 70 млрд рублей // TADVISER. 5 октября 2020. URL: https://www.tadviser.ru/a/550691
- 6. Васянькин А.В. Концепция многоразового использования ракетных установок // Аллея науки. -2023. -№ 3 (78). C. 4.
- 7. Ефимов М.В., Бруев В.Н. Отечественные ракетные двигатели на водородном топливе: ретроспективный анализ // Аллея науки. 2023. № 1 (76). С. 4.

| 8. КБХА. Завершена р      | разработка эс | кизного проек | та нового | кислородно- |
|---------------------------|---------------|---------------|-----------|-------------|
| метанового двигателя тя   |               |               |           |             |
| https://www.roscosmos.ru/ |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |
|                           |               |               |           |             |