Гаврилова Л.И.,

кандидат физико-математических наук

преподаватель

Частное профессиональное образовательное учреждение

«Газпром техникум Новый Уренгой»

Россия, г. Новый Уренгой

Антонова К.А.,

студент

3 курс, «Автоматизация технологических процессов и производств

(по отраслям)»

Частное профессиональное образовательное учреждение

«Газпром техникум Новый Уренгой»

Россия, г. Новый Уренгой

ПУАССОНОВСКОЕ РАСПРЕДЕЛЕНИЕ НА ПРИМЕРЕ ФУНКЦИОНИРОВАНИЯ АВТОСТОЯНКИ

Аннотация: В статье рассматривается математическая модель функционирования автостоянки, приводятся расчеты по математической модели процесса массового обслуживания и анализ полученных результатов.

Ключевые слова: пуассоновский поток событий, массовое обслуживание, поток заявок, плотность распределения, уравнение баланса.

Annotation: The article considers a mathematical model of the functioning of a parking lot, provides calculations for a mathematical model of the queuing process and analyzes the results obtained.

Key words: Poisson flow of events, queuing, flow of requests, distribution density, balance equation.

Потоком событий называется последовательность событий, наступающих в случайные моменты времени (например, поток отказов элементов, поток вызовов на телефонной станции, поток посетителей в кафе, поток обслуживаемых абонентов и др.). Простейшим (или пуассоновским) потоком называется такой поток событий, обладающий следующими свойствами [1, с.141]:

- свойством стационарности: вероятность того, что за промежуток времени длины τ произойдет ровно k событий, не зависящих от начала его отсчета;
- свойством ординарности: событие появляется не группами, а поодиночке;
- свойством отсутствия последствия: вероятность появления k событий за промежуток времени длины τ не зависит от того, сколько событий появилось в любой другой не пересекающийся с ним промежуток времени.

Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид [2, с. 637]:

$$f_1(x) = \lambda e^{-\lambda x},$$

плотность распределения длительностей обслуживания:

$$f_2(x) = \mu e^{-\mu x},$$

где λ - интенсивность поступления заявок в систему, μ - интенсивность обслуживания. Потоки заявок в обслуживании простейшие.

Модель процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом:

- 1) поступившая в обслуживающую систему, заявка присоединяется к очереди других (ранее поступивших) заявок;
- 2) канал обслуживания выбирает заявку из находящихся в очереди, с тем, чтобы приступить к его обслуживанию;
- 3) после завершения процедуры обслуживания очередной заявки канал обслуживания приступает к обслуживанию следующей заявки, если такая имеется в блоке ожидания.

Цикл функционирования подобных систем массового обслуживания повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередной заявки после завершения обслуживания предыдущей заявки происходит мгновенно, в случайные моменты времени. Случайный характер потока заявок и длительность обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс.

Постановка задачи. Пусть автостоянка для посетителей кафе имеет 6 мест. Автомобили пребывают на стоянку в соответствии с распределением Пуассона с интенсивностью 10 автомобилей в час. Время пребывания автомобилей на стоянке является экспоненциально распределенной случайной величиной со средним значением 45 минут. Количество временных мест для ожидания на территории стоянки имеется 4. Если стоянка и все места для ожидания заполнены, то прибывшие автомобили вынуждены искать другую автостоянку.

Требуется определить следующее: вероятность того, что в системе находится n автомобилей; эффективную интенсивность $\lambda_{\rm 9 \varphi \varphi}$ поступления автомобилей на стоянку; среднее количество L_s автомобилей на стоянке; среднее время T_o нахождения автомобиля в очереди на территории стоянки; среднее количество \overline{c} занятых мест на автостоянке.

Место для стоянки в рассматриваемой задаче выступает в роли сервиса, поэтому система имеет всего шесть средств обслуживания (c=6). Максимальная вместимость системы равна 6+4=10 автомобилей.

Обозначим:

n — число автомобилей в системе;

 λ_n — интенсивность поступления в систему автомобилей при условии, что в системе уже находится n автомобилей;

 μ_n - интенсивность выходного потока обслуженных автомобилей при условии, что в системе уже находится n автомобилей;

 p_n - вероятность того, что в системе находится n автомобилей.

Из условия задачи имеем, что $\lambda_n = 10, n = 0, 1, 2, ..., 10,$ и

$$\mu_n = egin{cases} n\left(rac{60}{45}
ight) = rac{4}{3}n \ \ ext{автомобилей в час, } n=1,2,...,6, \\ 6\left(rac{60}{45}
ight) = 8 \ \ ext{автомобилей в час, } n=7,8,...,10. \end{cases}$$

В общей системе массового обслуживания установлена зависимость вероятности p_n от интенсивностей λ_n и μ_n в виде уравнения баланса [2, с. 645]

$$\lambda_{n-1}p_{n-1} + \mu_{n+1}p_{n+1} = (\lambda_n + \mu_n)p_n, \quad n = 1, 2, ..., 10.$$

Уравнение баланса, соответствующее n=0, имеет вид $\lambda_0 p_0 = \mu_1 p_1$. Уравнение баланса решаются рекуррентно, последовательно выражая вероятности p_i через p_0 следующим образом:

для
$$n=0$$

$$p_1=\left(\frac{\lambda_0}{\mu_1}\right)p_0,$$
 для $n=1$
$$p_2=\left(\frac{\lambda_1\lambda_0}{\mu_2\mu_1}\right)p_0,$$
 для $n=3,4,...$
$$p_n=\left(\frac{\lambda_{n-1}\lambda_{n-2}...\lambda_1\lambda_0}{\mu_n\mu_{n-1}...\mu_2\mu_1}\right)p_0.$$

Значение p_0 определяется из уравнения суммы всех вероятностей

$$p_0 + p_1 + \dots + p_n = 1.$$

Определим вероятности p_n по выше представленным формулам, подставляя постоянную $\lambda_n=10\,$ и соответствующие μ_n , получим

$$p_n = \begin{cases} \left(10 \cdot \frac{3}{4}\right)^n \frac{p_0}{n!}, & n = 1, 2, \dots, 6, \\ \left(10 \cdot \frac{3}{4}\right)^n \frac{p_0}{6!} \left(\frac{5}{4}\right)^{n-6}, & n = 7, 8, \dots, 10. \end{cases}$$

Значение p_0 определим из уравнения суммы вероятностей при n=10, в результате получим $p_0=0.000406$. Далее вычислим $p_1=0.00304$, $p_2=0.01142$, $p_3=0.02852$, $p_4=0.05348$, $p_5=0.08021$, $p_6=0.10027$, $p_7=0.12534$, $p_8=0.15667$, $p_9=0.19584$, $p_{10}=0.24480$.

Автомобили поступают на стоянку с интенсивностью λ . Прибывающий автомобиль может поступить на стоянку с интенсивностью $\lambda_{\rm эфф}$ или уехать в поисках другой автостоянки с интенсивностью $\lambda_{\rm потери}$, т.е. $\lambda = \lambda_{\rm эфф} + \lambda_{\rm потери}$. Автомобиль не может въехать на стоянку, если там уже 10 автомобилей, что означает, часть автомобилей, которые не попадут на стоянку, пропорциональна p_{10} . Получим $\lambda_{\rm потери} = \lambda p_{10} = 2,448$ автомобилей в час, $\lambda_{\rm эфф} = \lambda - \lambda_{\rm потери}$, т.е.

 $\lambda_{
m s \phi \phi} = 10 - 2,448 = 7,552$ автомобилей в час.

Среднее количество L_s автомобилей на стоянке определяется через сумму $L_s = \sum_{k=1}^n k p_k = 7,66739$ автомобилей.

Автомобиль, ожидающий свободного места для стоянки, находится в очереди. Время его ожидания T_o вычислим через время пребывания автомобиля на стоянке (в системе) T_s . Так как $T_s = \frac{L_s}{\lambda_{9\varphi}} = 1,01554$ часа, то по определению $T_o = T_s - \frac{1}{\mu} = 0,26528$ часа.

Среднее число \overline{c} занятых мест на автостоянке определяется по формуле [2, с. 652] $\overline{c} = \frac{\lambda_{9\varphi\varphi}}{\mu}$, получим $\overline{c} = 6,0416$ мест. Можно рассчитать коэффициент использования мест на стоянке - $\frac{c}{\overline{c}} = 1,0069$.

Итак, вероятность того, что в системе находится n автомобилей:

$$p_0 = 0.000406, p_1 = 0.00304, p_2 = 0.01142, p_3 = 0.02852,$$

 $p_4 = 0.05348, p_5 = 0.08021, p_6 = 0.10027, p_7 = 0.12534,$

 $p_8 = 0.15667, p_9 = 0.19584, p_{10} = 0.24480;$

эффективная интенсивность $\lambda_{\rm эфф}=7,55$ автомобилей, поступивших на стоянку; среднее количество $L_s=7,67$ автомобилей на стоянке; среднее время $T_o=16,2$ мин нахождения автомобиля в очереди на территории стоянки; среднее количество $\overline{c}=6,04$ занятых мест на автостоянке, эффективность использования мест на стоянке составляет 101,7%.

Список литературы:

- 1. Вентцель Е.С. Исследование операций. Задачи, принципы, методология. Учеб. пособие для студ. втузов. 2-е изд., стер. М.: Высш. шк., 2001. 208 с.
- 2. Таха Хемди А. Введение в исследование операций // Пер. с англ. М.: Издательский дом «Вильямс», 2005. 912 с.